首页 | 本学科首页   官方微博 | 高级检索  
     

基于空间可分辨光谱的番茄成熟度判别方法研究
引用本文:黄玉萍,Renfu Lu,戚超,陈坤杰. 基于空间可分辨光谱的番茄成熟度判别方法研究[J]. 光谱学与光谱分析, 2018, 38(7): 2183-2188. DOI: 10.3964/j.issn.1000-0593(2018)07-2183-06
作者姓名:黄玉萍  Renfu Lu  戚超  陈坤杰
作者单位:1. 南京农业大学工学院,江苏 南京 210031
2. United States Department of Agriculture Agricultural Research Service (USDA/ARS), Michigan State University, East Lansing, MI 48824, USA
3. Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
基金项目:美国农业部农业研究院国家项目(5050-43640-002-00D)资助
摘    要:对基于空间可分辨光谱的番茄成熟度分类判别方法进行了试验研究。首先根据番茄的内部颜色,将600个番茄分为6个不同成熟度 (green, breaker, turning, pink, light red and red) ,然后用自行开发的多通道高光谱成像探头采集番茄的空间可分辨(SR)光谱,建立基于空间可分辨光谱的番茄成熟度偏最小二乘判别(PLSDA) 模型和支持向量机判别(SVMDA)模型。结果显示,对于PLSDA模型,SR光谱15为最佳分类光谱,分类正确率达到81.3%;对于SVMDA模型,SR光谱10为最佳预测分类光谱,分类正确率为86.3%。对六个成熟度等级番茄的判别分类,SVMDA模型要明显优于PLSDA模型。此外,相对于较小的光源-检测器距离SR光谱,较大的光源-检测器距离SR光谱可以获得更好的判别效果,显示出空间可分辨光谱在果蔬品质检测方面的应用潜力。

关 键 词:空间可分辨  成熟度  番茄  多通道高光谱成像  
收稿时间:2017-08-16

Tomato Maturity Classification Based on Spatially Resolved Spectra
HUANG Yu-ping,Renfu Lu,QI Chao,CHEN Kun-jie. Tomato Maturity Classification Based on Spatially Resolved Spectra[J]. Spectroscopy and Spectral Analysis, 2018, 38(7): 2183-2188. DOI: 10.3964/j.issn.1000-0593(2018)07-2183-06
Authors:HUANG Yu-ping  Renfu Lu  QI Chao  CHEN Kun-jie
Affiliation:1. College of Engineering, Nanjing Agricultural University, Nanjing 210031, China2. United States Department of Agriculture Agricultural Research Service (USDA/ARS), Michigan State University, East Lansing, MI 48824, USA3. Department of Biosystems and Agricultural Engineering, Michigan State University, East Lansing, MI 48824, USA
Abstract:A multichannel hyperspectral imaging probe with 30 optic fibers covering the wavelength range of 550~1 650 nm and the light source-detector distances of 1.5~36 mm was recently developed for property and quality assessment of food products. Spatially resolved spectra were acquired using the new developed multichannel probe for 600 “Sun Bright” tomato fruit, which were grouped into six maturity grades (i.e., green, breaker, turning, pink, light red, red), based on their internal color distributions. Partial least squares discriminant analysis (PLSDA) and support vector machine discriminant analysis (SVMDA) models for the 15 spatially resolved spectra were developed and compared to determine the optimal models for classification of tomato maturity. The results showed that for PLSDA models, SR spectra 15 gave the best classification results with the accuracy of 81.3%, while for SVMDA models, SR spectra 10 had the best accuracy of 86.3%. Overall, SVMDA models will provide better performance than PLSDA models for tomato maturity classification. Moreover, spatially resolved spectra with larger source-detector distances could offer better classification results, which suggests that spatially resolved spectra has potential for measuring fruit and vegetables quality.
Keywords:Spatially resolved spectra  Maturity  Tomato  Multichannel hyperspectral imaging probe  
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号