首页 | 本学科首页   官方微博 | 高级检索  
     

基于Raman光谱的人、犬、兔血液鉴别
引用本文:董家林,洪明坚,郑祥权,徐溢. 基于Raman光谱的人、犬、兔血液鉴别[J]. 光谱学与光谱分析, 2018, 38(2): 459-466. DOI: 10.3964/j.issn.1000-0593(2018)02-0459-08
作者姓名:董家林  洪明坚  郑祥权  徐溢
作者单位:1. 重庆大学软件学院,重庆 401331
2. 重庆大学化学化工学院,重庆 401331
3. 重庆大学新型微纳器件与系统技术国家重点学科实验室,重庆 400044
基金项目:国家高技术研究发展计划(863计划)项目(2015AA021104),国家自然科学基金项目(61327002),重庆市科委基础与前沿基金项目(cstc2015jcyjBX0010)资助
摘    要:多物种血液鉴别对于进出口检验检疫、刑事侦检以及野生动物保护等领域尤为重要。传统的血液鉴别方法,在鉴别时常常会对血液样本造成破坏,而Raman光谱作为一种振动光谱可获得物质分子振动、转动信息,进而分析物质组成,为无损血液鉴别技术提供了可能。目前,已经有基于Raman光谱进行血液鉴别的报道,但存在如下两个问题:单一物种样本数量较少,易导致模型欠拟合;均采用线性分类模型,忽略了光谱中非线性因素的影响,降低了模型的分类性能。因此,将支持向量机沿用至Raman光谱血液鉴别中,克服了线性模型只能为光谱中线性关系建模的缺点,有效地吸收了Raman光谱中的非线性关系,实现了对人、犬及兔血液的三分类。实验通过激发波长为785 nm的海洋Raman光谱仪测得共326例样本数据(人110例、犬116例、兔100例),利用Savitzky-Golay平滑滤波、加权最小二乘多项式拟合基线以及矢量归一化等方法对Raman光谱数据进行预处理,并选择2/3的样本数据作为校正集用于模型训练,余下1/3作为测试集用于盲测。与线性分类模型对比实验结果显示,该模型的校正集分类正确率达100%,盲测集分类正确率达93.52%,均优于线性分类模型。实验结果表明,基于支持向量机的分类模型可以用于Raman血液光谱鉴别,具有重要的研究价值和广泛的应用前景。

关 键 词:血液  Raman光谱  分类模型  支持向量机  
收稿时间:2016-10-18

Discrimination of Human,Dog and Rabbit Blood Using Raman Spectroscopy
DONG Jia-lin,HONG Ming-jian,ZHENG Xiang-quan,XU Yi. Discrimination of Human,Dog and Rabbit Blood Using Raman Spectroscopy[J]. Spectroscopy and Spectral Analysis, 2018, 38(2): 459-466. DOI: 10.3964/j.issn.1000-0593(2018)02-0459-08
Authors:DONG Jia-lin  HONG Ming-jian  ZHENG Xiang-quan  XU Yi
Affiliation:1. School of Software Engineering, Chongqing University, Chongqing 401331, China2. School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China3. National Key Laboratory of Fundamental Science of Micro/Nano-Device and System Technology, Chongqing University, Chongqing 400044, China
Abstract:The identification of multiple species blood is particularly important for entry-exit inspection and quarantine, forensic investigation and wildlife protection. The traditional methods often destroy blood samples and make further analysis of samples impossible. Raman Spectroscopy is a vibrational spectrum, which can obtain the information of molecular vibration and rotation so as to analyze the chemical composition of the material. It provides the possibility of non-destructive blood identification. Currently, there are several methods of blood identification based on Raman spectroscopy, but these methods use the linear classification model, ignoring nonlinear relationship between the spectrum and sample, and lead to the bad performance of the model. Moreover, the small sample number of each species usually results in the under-fitting the model. Therefore, this paper set up a classification model for the nonlinear relationship using the support vector machine to identify Raman spectra of blood, overcame the shortcoming of the linear classification model which emphasizes the linear characteristic of the spectrum in the training, and absorbed the nonlinear relationship in the Raman spectrum effectively, realizing the three classification of human, dog and rabbit blood. There are a total of 326 samples which were measured by Ocean Raman spectrometer with excitation wavelength of 785 nm, including 110 humans, 116 dogs and 100 rabbits. Savitzky-Golay smoothing filter, weighted least squares baseline correction, and vector normalization were used to preprocess them. The 2/3 of these samples were used as calibration set for training and the remaining samples were used as test set for blind testing. Experimental results showed that the classification accuracy of proposed model for the calibration set and the blind test were 100% and 93.52%, and outperformed the existing linear classification models. This indicates that proposed classification model has good application prospects and research value.
Keywords:Blood  Raman spectrum  Classification model  Support vector machine  
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号