首页 | 本学科首页   官方微博 | 高级检索  
     检索      

姜科植物长柄山姜及茴香砂仁精油原位拉曼光谱研究
引用本文:司民真,张德清,李伦,张川云.姜科植物长柄山姜及茴香砂仁精油原位拉曼光谱研究[J].光谱学与光谱分析,2018,38(2):448-453.
作者姓名:司民真  张德清  李伦  张川云
作者单位:1. 楚雄师范学院云南省高校分子光谱重点实验室,云南 楚雄 675000
2. 楚雄师范学院光谱应用技术研究所,云南 楚雄 675000
基金项目:国家自然科学基金项目(11364001)资助
摘    要:常温下,将制备好的长柄山姜及茴香砂仁的水装片放在显微拉曼光谱仪的载物台上,寻找油细胞,并分析其中精油。长柄山姜油细胞上获得的拉曼光谱,较强峰出现在1 638,1 600,1 555,1 203和1 001 cm-1,次强峰出现在1 716,1 577,1 496,1 407,1 346,1 307,1 273,1 181,1 156,1 029,958,618和218 cm-1共获得26条光谱线,与肉桂酸甲酯拉曼光谱的29条谱线比较,长柄山姜油细胞有22条谱线与之有对应关系;茴香砂仁油细胞上获得的拉曼光谱较强峰出现在1 648,1 639,1 607,1 174,842和836 cm-1,次强峰出现在1 292,1 244,1 235,1 204和631 cm-1共获得24条光谱线,与4-烯丙基苯甲醚的拉曼光谱在300~1 700 cm-1区间内的29条谱线比较,茴香砂仁油细胞有23条谱峰与之有对应关系。说明长柄山姜挥发油的主要成分是肉桂酸甲酯,茴香砂仁挥发油的主要成分为4-烯丙基苯甲醚。用密度泛函理论计算了肉桂酸甲酯、4-烯丙基苯甲醚的拉曼光谱,并对谱线进行了初步的归属。姜科植物油细胞中精油不需提取就可直接快速的检测,用此方法可对姜科植物精油的提取进行质量控制及开发研究。

关 键 词:长柄山姜精油  茴香砂仁精油  拉曼光谱  肉桂酸甲酯  4-烯丙基苯甲醚  密度泛函理论  
收稿时间:2016-07-08

Essential Oils of Zingiberaceae Alpinia Kwangsiensis and Achasma Yunnanensis in Situ Research with Raman
SI Min-zhen,ZHANG De-qing,LI Lun,ZHANG Chuan-yun.Essential Oils of Zingiberaceae Alpinia Kwangsiensis and Achasma Yunnanensis in Situ Research with Raman[J].Spectroscopy and Spectral Analysis,2018,38(2):448-453.
Authors:SI Min-zhen  ZHANG De-qing  LI Lun  ZHANG Chuan-yun
Institution:1. Key Laboratory of Molecular Spectroscopy, Colleges and Universities in Yunnan Province, Chuxiong Normal University, Chuxiong 675000, China 2. Application Institute of Spectroscopy Technology, Chuxiong Normal University, Chuxiong 675000, China
Abstract:Non-destructive analysis of the essential oils ingredient in oil cells at room temperature was presented. This work showed the possibility to detect in situ the main components of the essential oils in Alpinia kwangsiensis and Achasma yunnanensis oil cells by means of Raman spectroscopy. Water slice of fresh samples were prepared. The oil cells in water slice can be seen using 20 objective lens of DXR Laser confocal micro Raman spectrometer. At the Alpinia kwangsiensis oil cell, high intensity bands were present in 1 638,1 600,1 555,1 203,1 001 cm-1,and low intensity bands were present in 1 716,1 577,1 496,1 407,1 346,1 307,1 273,1 181,1 156,1 029,958,618,218 cm-1. Together 26 spectroscopic bands were obtained. The Raman spectrum of the Methyl cinnamate, together 29 spectroscopic bands, were obtained. It was found that the 22 presented spectroscopic bands of Alpinia kwangsiensis oil cell correlated very well with those obtained by the Methyl cinnamate;At the Achasma yunnanensis oil cell, high intensity bands were present in 1 648,1 639,1 607,1 174,842,836 cm-1,and low intensity bands were present in 1 292,1 244,1 235,1 204,631 cm-1. Together 24 spectroscopic bands were obtained. The Raman spectrum of the 4-Allyl anisole, together with 29 spectroscopic bands(between 300~1 700 cm-1) was obtained. It was found that the 23 presented spectroscopic bands of Achasma yunnanensis oil cell correlated very well with those obtained by the 4-Allyl anisole. The experimental work was supported by quantum chemical calculations at the B3LYP/6-311G level of theory. The essential oils ingredient in oil cells of Zingiberaceae samples can be detected directly and quickly without extraction. This method can be use to quality control and development research for zingiberaceae plant essential oil extraction.
Keywords:Essential oils of Alpinia kwangsiensis  Essential oils of Achasma yunnanensis  Raman spectrum  Methyl cinnamate  4-Allyl anisole  Density Functional Theory  
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号