首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Giant enhancement of noncontact friction between closely spaced bodies by dielectric films and two-dimensional systems
Authors:A I Volokitin  B N J Persson  H Ueba
Institution:1. Institut für Festk?rperforschung, Forschungszentrum Jülich, D-52425, Jülich, Germany
2. Samara State Technical University, Samara, 443100, Russia
3. Department of Electronics, Toyama University, Gofuku, Toyama, 930-8555, Japan
Abstract:The effect of an external bias voltage and spatial variations of the surface potential on the damping of cantilever vibrations in an atomic force microscope (AFM) is considered. The damping is due to an electrostatic friction that arises due to dissipation of the energy of an electromagnetic field generated in the sample by oscillating static charges induced on the surface of the AFM probe tip by the bias voltage or spatial variations of the surface potential. A similar effect appears when the tip is oscillating in an electrostatic field created by charged defects present in the dielectric sample. The electrostatic friction is compared to the van der Waals (vdW) friction between closely spaced bodies, which is caused by a fluctuating electromagnetic field related to the quantum and thermal fluctuations of current density inside the bodies. It is shown that the electrostatic friction and the vdW friction can be strongly enhanced in the presence of dielectric films or two-dimensional (2D) structures—such as a 2D electron system or an incommensurate layer of adsorbed ions exhibiting acoustic oscillations—on the probe tip and sample surfaces. It is also shown that the damping of cantilever oscillations caused by the electrostatic friction in the presence of such 2D structures can have the same order of magnitude and the same dependence on the distance as observed in experiment by Stipe et al. Phys. Rev. Lett. 87, 096801 (2001)]. At small distances, the vdW friction can be large enough to be measured in experiment. In interpreting the experimental data that obey a quadratic dependence on the bias voltage, one can reject a phonon mechanism according to which the friction depends on the fourth power of the voltage.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号