首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Heat transfer and hydrodynamic studies on two- and three-phase fluidized beds of floating bubble breakers
Authors:Sang D Kim  Yoon J Lee  Jong O Kim
Abstract:Heat transfer characteristics in three-phase fluidized beds of floating bubble breakers have been studied in a 0.142 m I.D. x 2.0 m high Plexiglas column fitted with an axially mounted cylindrical heater.Effects of the liquid and gas velocities, the particle size, the volume ratio of floating bubble breaker to particles on phase holdup, the vertical bubble length, and the heat transfer coefficient have been determined.In the bubble-coalescing regime, the heat transfer coefficient in three-phase fluidized beds having the volume ratio Vf/Vs of 10–15% produced a maximum increase in heat transfer coefficient of about 20% in comparison to that in the bed without floating bubble breakers. Also, bubble length and gas-phase holdups exhibited their maximum and minimum values at a volume ratio of 10–15%. The heat transfer coefficient in three-phase fluidized beds of floating bubble breakers can be estimated from the surface renewal model with isotropic turbulence theory.Heat transfer coefficients expressed in terms of the Nusselt number have been correlated with the particle Reynolds number and the volume ratio of floating bubble breakers to particles.
Keywords:fluidized beds  chemical reactor  multiphase systems  forced convection
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号