首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photochemistry of 4'-benzophenone-substituted nucleoside derivatives as models for ribonucleotide reductases: competing generation of 3'-radicals and photoenols
Authors:Lehmann T E  Müller G  Berkessel A
Institution:Institut für Organische Chemie, Universit?t zu K?ln, Germany.
Abstract:Ribonucleotide reductases (RNRs) catalyze the 2'-reduction of ribonucleotides, thus providing 2'-deoxyribonucleotides, the monomers for DNA-biosynthesis. The current mechanistic hypothesis for the catalysis effected by this class of enzymes involves a sequence of radical reactions. A 3'-hydrogen abstraction, effected by a radical at the enzyme's active site, is believed to initiate the catalytic cycle. As models for this substrate-enzyme interaction, the photochemically induced intramolecular hydrogen abstraction in a series of 4'-benzophenone-substituted nucleoside analogues was studied. Model compounds with hydroxy-, methoxy-, mesyloxy-groups or a cyclic carbonate in 2'- and 3'-positions were investigated. Depending on the substitution pattern, two different types of photoproducts were observed: Those which result from photoenol formation (gamma-H-abstraction) and those which result from abstraction of the 3'-H-atom (delta-H-abstraction). Photoenol formation was further supported by H/D-exchange experiments. Thus, the 3'-H-abstraction postulated as the initial step in RNR action was successfully modeled by photolysis of 4'-benzophenone-substituted nucleoside analogues. The regioselectivity of the photochemical H-abstraction and thus of the product distribution as a function of the 2'- and 3'-substituents was rationalized on the basis of a conformational analysis of the four model systems, utilizing molecular mechanics simulations.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号