首页 | 本学科首页   官方微博 | 高级检索  
     


The empirical performance of a polynomial algorithm for constrained nonlinear optimization
Authors:Dorit S. Hochbaum  Sridhar Seshadri
Affiliation:(1) School of Business Administration and Department of IEOR, University of California, 94720 Berkeley, CA, USA;(2) School of Business Administration, University of California, 94720 Berkeley, CA, USA
Abstract:In [6], a polynomial algorithm based on successive piecewise linear approximation was described. The algorithm is polynomial for constrained nonlinear (convex or concave) optimization, when the constraint matrix has a polynomial size subdeterminant. We propose here a practical adaptation of that algorithm with the idea of successive piecewise linear approximation of the objective on refined grids, and the testing of the gap between lower and upper bounds. The implementation uses the primal affine interior point method at each approximation step. We develop special features to speed up each step and to evaluate the gap. Empirical study of problems of size up to 198 variables and 99 constraints indicates that the procedure is very efficient and all problems tested were terminated after 171 interior point iterations. The procedure used in the implementation is proved to converge when the objective is strongly convex.Supported in part by the Office of Naval Research under Grant No. N00014-88-K-0377 and Grant No. ONR N00014-91-J-1241.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号