首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Raman H-bond pair volume for water
Authors:Walrafen George E
Institution:Department of Chemistry, University of Kansas, Lawrence, Kansas 66045-0046, USA.
Abstract:The dispersion of the H-bond pair volume Delta V over the decoupled OD and coupled OH-stretching contours from HDO in H(2)O was determined from Raman intensities at pressures to 9700 bar at 301 K. The dispersion of Delta V was determined from -RTpartial differential ln(I(i)/I(REF))/ partial differential P](T) versus omega (in cm(-1)), where i refers to omega's over the stretching contours and I(REF) refers to the reference intensity at the isosbestic frequency. The maximum H-bond pair volume (defined for breakage) is 1.4+/-0.1 cm(3)/mol H-bond, which corresponds to the volume difference between a large dispersion maximum at 2,675 cm(-1) (near the OD stretch omega of HDO in dense supercritical water) and a large, broad minimum centered near 2,375 cm(-1) (just below the OD stretch omega of HDO in lda ice). The average DeltaV is 0.71+/-0.10 cm(3)/mol H-bond. Other minima near 2,625 cm(-1) (OD) and 3550 cm(-1) (OH) refers to bent H-bonds whose angles are approximately 150 deg. Isothermal pressurization of water lowers the molal volume by decreasing the concentration of long, weak H-bonds, and increasing the concentrations of bent H-bonds and short, strong, linear H-bonds. Such bending, shortening, and strengthening produces freezing to ice VI near 10 kbar at 301 K. The isobaric temperature derivative of the maximum H-bond volume is (partial differential Delta V/partial differential T)(P)< or =(2-5) x 10(-3) cm(3)/deg mol H-bond. The OH enthalpy dispersion curve for saturated NaBF(4) in water, yields a large maximum at 3,530-3,540 cm(-1) indicating that BF(4) (-) interacts preferentially with the dangling or "free" OH groups of water thus producing weak, strongly bent H-bonds having angles similar to those of the 3,550 cm(-1) high-pressure H-bond bending feature.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号