首页 | 本学科首页   官方微博 | 高级检索  
     


Development of a novel mixed hemimicelles dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene for the separation and preconcentration of fluoxetine in different matrices before its determination by fiber optic linear array spectrophotometry and mode-mismatched thermal lens spectroscopy
Authors:Elahe Kazemi  Ali Mohammad Haji Shabani  Shayessteh Dadfarnia  Amir Abbasi  Mohammad Reza Rashidian Vaziri  Abbas Behjat
Affiliation:1. Department of Chemistry, Yazd University, Safaieh, 89195-741, Yazd, Iran;2. Department of Physics, Yazd University, Safaieh, 89195-741, Yazd, Iran;3. Laser and Optics Research School, 14155-1339, Tehran, Iran
Abstract:This study aims at developing a novel, sensitive, fast, simple and convenient method for separation and preconcentration of trace amounts of fluoxetine before its spectrophotometric determination. The method is based on combination of magnetic mixed hemimicelles solid phase extraction and dispersive micro solid phase extraction using 1-hexadecyl-3-methylimidazolium bromide coated magnetic graphene as a sorbent. The magnetic graphene was synthesized by a simple coprecipitation method and characterized by X-ray diffraction (XRD), Fourier transform infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The retained analyte was eluted using a 100 μL mixture of methanol/acetic acid (9:1) and converted into fluoxetine-β-cyclodextrin inclusion complex. The analyte was then quantified by fiber optic linear array spectrophotometry as well as mode-mismatched thermal lens spectroscopy (TLS). The factors affecting the separation, preconcentration and determination of fluoxetine were investigated and optimized. With a 50 mL sample and under optimized conditions using the spectrophotometry technique, the method exhibited a linear dynamic range of 0.4–60.0 μg L−1, a detection limit of 0.21 μg L−1, an enrichment factor of 167, and a relative standard deviation of 2.1% and 3.8% (n = 6) at 60 μg L−1 level of fluoxetine for intra- and inter-day analyses, respectively. However, with thermal lens spectrometry and a sample volume of 10 mL, the method exhibited a linear dynamic range of 0.05–300 μg L−1, a detection limit of 0.016 μg L−1 and a relative standard deviation of 3.8% and 5.6% (n = 6) at 60 μg L−1 level of fluoxetine for intra- and inter-day analyses, respectively. The method was successfully applied to determine fluoxetine in pharmaceutical formulation, human urine and environmental water samples.
Keywords:Dispersive micro solid-phase extraction   Mixed hemimicelles solid phase extraction   Ionic liquid   Magnetic graphene   Mode-mismatched thermal lens spectroscopy   Fluoxetine
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号