首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nuclear matter approach to the heavy-ion optical potential: (II). Imaginary part
Authors:T Izumoto  S Krewald  Amand Faessler
Institution:Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA;Institut für Kernphysik der Kernforschungsanlage Jülich, D-5170 Jülich, West Germany;Institut für Theoretische Physik der Universität Tübingen, D-7400 Tübingen, West Germany
Abstract:The heavy-ion optical potentials are constructed in a nuclear matter approach, for the 16O + 16O, 40Ca + 16O and 40Ca + 40Ca elastic scattering at the incident energies per nucleon Elab/A ? 45 MeV. The energy density formalism is employed assuming that the complex energy density of colliding heavy ions is a functional of the nucleon density ?(r), the intrinsic kinetic energy density τ(2)(r) and the average momentum of relative motion per nucleon Kr(≦ 1.5 fm?1). The complex energy density is numerically evaluated for the two units of colliding nuclear matter with the same values of ρ, τ(2) and Kr. The Bethe-Goldstone equation is solved for the corresponding Fermi distribution in momentum space using the Reid soft-core interaction. The “self-consistent” single-particle potential for unoccupied states which is continuous at the Fermi surface plays a crucial role to produce the imaginary part. It is found that the calculated optical potentials become more attractive and absorptive with increasing incident energy. The elastic scattering and the reaction cross sections are in fair agreement with the experimental data.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号