首页 | 本学科首页   官方微博 | 高级检索  
     


The highly selective capture of phosphopeptides by zirconium phosphonate-modified magnetic nanoparticles for phosphoproteome analysis
Authors:Liang Zhao  Ren’an Wu  Guanghui Han  Houjiang Zhou  Lianbing Ren  Ruijun Tian  Hanfa Zou
Affiliation:National Chromatographic R and A Center, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China.
Abstract:The highly selective capture of phosphopeptides from proteolytic digests is a great challenge for the identification of phosphoproteins by mass spectrometry. In this work, the zirconium phosphonate-modified magnetic Fe3O4/SiO2 core/shell nanoparticles have been synthesized and successfully applied for the selective capture of phosphopeptides from complex tryptic digests of proteins before the analysis of MALDI-TOF mass spectrometry with the desired convenience of sample handling. The ratio of magnetic nanoparticle to protein and the incubation time for capturing phosphopeptides from complex proteolytic digests were investigated, and the optimized nanoparticle-to-protein ratio and incubation time were between 15:1 to 30:1 and 30 min, respectively. The excellent detection limit of 0.5 fmol β-casein has been achieved by MALDI-TOF mass spectrometry with the specific capture of zirconium phosphonate-modified magnetic Fe3O4 nanoparticles. The great specificity of zirconium phosphonate-modified magnetic Fe3O4 nanoparticles to phosphopeptides was demonstrated by the selective capture of phosphopeptides from a complex tryptic digest of the mixture of α-casein and bovine serum albumin at molar ratio of 1 to 100 in MALDI-TOF-MS analysis. An application of the magnetic nanoparticles to selective capture phosphopeptides from a tryptic digest of mouse liver lysate was further carried out by combining with nano-LC-MS/MS and MS/MS/MS analyses, and a total of 194 unique phosphopeptides were successfully identified.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号