首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Density functional theoretical (DFT) study for the prediction of spectroscopic parameters of ClCCCN
Authors:Varadwaj Pradeep Risikrishna
Institution:Saha Institute of Nuclear Physics, Block-AF, Bidhannagar, Kolkata 700064, India. pr.varadwaj@saha.ac.in
Abstract:DFT(B3LYP, B3PW91) calculations in conjunction with three different basis sets have been utilized to investigate the variations in the bond lengths, dipole moment, rotational constants, IR frequencies, IR intensities and rotational invariants of ClCCCN. The nuclear quadrupole constants of chlorine ((35)Cl, (37)Cl) and nitrogen ((14)N) of ClCCCN have been calculated on the experimental r(s) structure as well as on the B3PW91/6-311++g(d,p) optimized geometry and were found to be within the scale length of the experimental uncertainty. The slope and intercept obtained from the regression analysis between the B3LYP/6-311++g(d,p) level calculated and experimental B(o) values of ClCCCN were used to calculate reasonable values of rotational constants of all the rare isotopic species of ClCCCN having standard deviation +/-0.048 MHz. All the spectroscopic parameters obtained from DFT calculations show satisfactory agreement with the available experimental data.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号