首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hard sphere perturbation theory for fluids with soft-repulsive-core potentials
Authors:Ben-Amotz Dor  Stell George
Institution:Department of Chemistry, Purdue University, West Lafayette, Indiana 47907, USA.
Abstract:The thermodynamic properties of fluids with very soft repulsive-core potentials, resembling those of some liquid metals, are predicted with unprecedented accuracy using a new first-order thermodynamic perturbation theory. This theory is an extension of Mansoori-Canfield/Rasaiah-Stell (MCRS) perturbation theory, obtained by including a configuration integral correction recently identified by Mon, who evaluated it by computer simulation. In this work we derive an analytic expression for Mon's correction in terms of the radial distribution function of the soft-core fluid, g(0)(r), approximated using Lado's self-consistent extension of Weeks-Chandler-Andersen (WCA) theory. Comparisons with WCA and MCRS predictions show that our new extended-MCRS theory outperforms other first-order theories when applied to fluids with very soft inverse-power potentials (n< or =6), and predicts free energies that are within 0.3 kT of simulation results up to the fluid freezing point.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号