首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Generalizations for the potential of mean force between two isolated colloidal particles from Monte Carlo simulations
Authors:Wu Jianzhong  Prausnitz John M
Institution:Department of Chemical Engineering, University of California, Berkeley 94720, USA. jwu@engr.ucr.edu
Abstract:A substantial amount of experimental and numerical evidence has shown that the Derjaguin-Landau-Verwey-Overbeek theory is not suitable for describing those colloidal solutions that contain multivalent counterions. Toward improved understanding of such solutions, the authors report Monte Carlo calculations wherein, following Rouzina and Bloomfield, they postulate that, in the absence of van der Waals forces, the overall force between two isolated charged colloidal particles in electrolyte solutions is determined by a dimensionless parameter Gamma=z(2)l(B)/a, which measures the electrostatic repulsion between counterions adsorbed on the macroion surface, where z = counterion valence, l(B)=Bjerrum length, and a = average separation between counterions on the macroion surface calculated as if the macroion were fully neutralized. The authors find, first, that the maximum repulsion between like-charged macroions occurs at Gamma approximately 0.5 and, second, that onset of attraction occurs at Gamma approximately 1.8, essentially independent of the valence and concentration of the surrounding electrolyte. These observations might provide new understanding of interactions between electrostatic double layers and perhaps offer explanations for some electrostatic phenomena related to interactions between DNA molecules or proteins.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号