首页 | 本学科首页   官方微博 | 高级检索  
     


Ab initio calculation of the NH(3sigma-)-NH(3sigma-) interaction potentials in the quintet, triplet, and singlet states
Authors:Dhont Guillaume S F  van Lenthe Joop H  Groenenboom Gerrit C  van der Avoird Ad
Affiliation:Institute of Theoretical Chemistry, Institute for Molecules and Materials, Radboud University Nijmegen, Toernooiveld 1, 6525 ED Nijmegen, The Netherlands.
Abstract:We present the ab initio potential-energy surfaces of the NH-NH complex that correlate with two NH molecules in their 3sigma- electronic ground state. Three distinct potential-energy surfaces, split by exchange interactions, correspond to the coupling of the S(A) = 1 and S(B) = 1 electronic spins of the monomers to dimer states with S = 0, 1, and 2. Exploratory calculations on the quintet (S = 2), triplet (S = 1), and singlet (S = 0) states and their exchange splittings were performed with the valence bond self-consistent-field method that explicitly accounts for the nonorthogonality of the orbitals on different monomers. The potential surface of the quintet state, which can be described by a single Slater determinant reference function, was calculated at the coupled cluster level with single and double excitations and noniterative treatment of the triples. The triplet and singlet states require multiconfiguration reference wave functions and the exchange splittings between the three potential surfaces were calculated with the complete active space self-consistent-field method supplemented with perturbative configuration interaction calculations of second and third orders. Full potential-energy surfaces were computed as a function of the four intermolecular Jacobi coordinates, with an aug-cc-pVTZ basis on the N and H atoms and bond functions at the midpoint of the intermolecular vector R. An analytical representation of these potentials was given by expanding their dependence on the molecular orientations in coupled spherical harmonics, and representing the dependence of the expansion coefficients on the intermolecular distance R by the reproducing kernel Hilbert space method. The quintet surface has a van der Waals minimum of depth D(e) = 675 cm(-1) at R(e) = 6.6a0 for a linear geometry with the two NH electric dipoles aligned. The singlet and triplet surfaces show similar, slightly deeper, van der Waals wells, but when R is decreased the weakly bound NH dimer with S = 0 and S = 1 converts into the chemically bound N2H2 diimide (also called diazene) molecule with only a small energy barrier to overcome.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号