首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Assessing the Progression of Early Atherosclerosis Mice Using a Fluorescence Nanosensor for the Simultaneous Detection and Imaging of pH and Phosphorylation
Authors:Jin Li  Na Zhao  Dr Wei Zhang  Dr Ping Li  Dr Xia Yin  Dr Wen Zhang  Dr Hui Wang  Prof Bo Tang
Institution:1. College of Chemistry, Chemical Engineering and Materials Science, Collaborative Innovation Center of Functionalized Probes for Chemical Imaging in Universities of Shandong, Key Laboratory of Molecular and Nano Probes, Ministry of Education, Institute of Biomedical Sciences, Shandong Normal University, Jinan, 250014 P. R. China;2. Molecular Science and Biomedicine Laboratory(MBL), State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082 P. R. China
Abstract:The inflammatory microenvironment involves changes in pH and protein phosphorylation state and is closely related to the occurrence and development of atherosclerosis (AS). Herein, we constructed a dual-detection fluorescence nanosensor PCN-NP-HPZ based on post modification of MOFs, which realized the simultaneous detection and imaging of pH and phosphorylation through the pH-sensitive group piperazine and the ZrIV node of the MOFs. The sensors were used to monitor changes in blood pH and phosphate levels at different time stages during atherosclerotic plaque formation. Two-photon fluorescence imaging was also performed in the vascular endothelium. Blood tests combined with two-photon fluorescence images indicated that in the early stage of AS, blood and tissue pH levels were lower than that of the normal mice, while phosphate and tissue phosphorylation levels were higher than that of the normal mice. The present study provides a new analysis method for the assessment of early atherosclerotic disease.
Keywords:Atherosclerosis  Phosphorylation  Simultaneous Detection  Two-Photon Imaging  pH
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号