Affiliation: | 1. Institut de Química Computacional i Catàlisi (IQCC), Departament de Química, Universitat de Girona, C/Mª Aurèlia Capmany 69, 17003 Girona, Catalonia, Spain;2. Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain These authors contributed equally to this work.;3. Departamento de Química Inorgánica, Instituto de Ciencia Molecular (ICMol), Universidad de Valencia, C/Catedrático José Beltrán, Paterna, 46980 Valencia 2, Spain;4. Departamento de Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Instituto de Biomoléculas (INBIO), Universidad de Cádiz, Puerto Real, 11510 Cádiz, Spain |
Abstract: | Two oxoiron(IV) isomers ( R 2a and R 2b ) of general formula [FeIV(O)(RPyNMe3)(CH3CN)]2+ are obtained by reaction of their iron(II) precursor with NBu4IO4. The two isomers differ in the position of the oxo ligand, cis and trans to the pyridine donor. The mechanism of isomerization between R 2a and R 2b has been determined by kinetic and computational analyses uncovering an unprecedented path for interconversion of geometrical oxoiron(IV) isomers. The activity of the two oxoiron(IV) isomers in hydrogen atom transfer (HAT) reactions shows that R 2a reacts one order of magnitude faster than R 2b , which is explained by a repulsive noncovalent interaction between the ligand and the substrate in R 2b . Interestingly, the electronic properties of the R substituent in the ligand pyridine ring do not have a significant effect on reaction rates. Overall, the intrinsic structural aspects of each isomer define their relative HAT reactivity, overcoming changes in electronic properties of the ligand. |