首页 | 本学科首页   官方微博 | 高级检索  
     


Two new designs of lamp-type piezoelectric metamaterials for active wave propagation control
Affiliation:1. G.W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA;2. D. Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, USA
Abstract:A major limitation of current metamaterials is that they control the wave propagation depending on their structure. Active metamaterials in this paper are designed whose physical structure is fixed, yet the position where they control the wave propagation can be changed by piezoelectric conditions. Two kinds of lamp-type piezoelectric metamaterials were assembled from an aluminum base, rubber plate and steel column, the piezoelectric patches were attached on both sides of the steel column, which can change the equivalent elastic modulus of the whole structure when the pair of patches are accessed by an LC circuit. The equivalent elastic modulus becomes zero or negative when the frequency of the circuit varies between 29,000 Hz and 30,000 Hz, in this case the two kinds of lamp-type piezoelectric metamaterials behave as a wave localization and a wave guide, respectively. The advantage of the lamp-type piezoelectric metamaterials is that we can control the wave propagation actively, as long as we change the position of the piezoelectric patches or choose the kind of lamp-type piezoelectric metamaterial. This is more flexible than a traditional passive metamaterial and provides a new way for us to design some acoustic equipment, such as acoustic cloaking, an acoustic black hole, filter or wave guide.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号