首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Optimal Combination of Linear and Spectral Estimators for Generalized Linear Models
Authors:Mondelli  Marco  Thrampoulidis  Christos  Venkataramanan  Ramji
Institution:1.Institute of Science and Technology (IST) Austria, Am Campus 1, 3400, Klosterneuburg, Austria
;2.Department of Electrical and Computer Engineering, University of British Columbia, 5500-2332 Main Mall, Vancouver, BC, V6T 1Z4, Canada
;3.Department of Engineering, University of Cambridge, Trumpington Street, Cambridge, CB2 1PZ, United Kingdom
;
Abstract:

We study the problem of recovering an unknown signal \({\varvec{x}}\) given measurements obtained from a generalized linear model with a Gaussian sensing matrix. Two popular solutions are based on a linear estimator \(\hat{\varvec{x}}^\mathrm{L}\) and a spectral estimator \(\hat{\varvec{x}}^\mathrm{s}\). The former is a data-dependent linear combination of the columns of the measurement matrix, and its analysis is quite simple. The latter is the principal eigenvector of a data-dependent matrix, and a recent line of work has studied its performance. In this paper, we show how to optimally combine \(\hat{\varvec{x}}^\mathrm{L}\) and \(\hat{\varvec{x}}^\mathrm{s}\). At the heart of our analysis is the exact characterization of the empirical joint distribution of \(({\varvec{x}}, \hat{\varvec{x}}^\mathrm{L}, \hat{\varvec{x}}^\mathrm{s})\) in the high-dimensional limit. This allows us to compute the Bayes-optimal combination of \(\hat{\varvec{x}}^\mathrm{L}\) and \(\hat{\varvec{x}}^\mathrm{s}\), given the limiting distribution of the signal \({\varvec{x}}\). When the distribution of the signal is Gaussian, then the Bayes-optimal combination has the form \(\theta \hat{\varvec{x}}^\mathrm{L}+\hat{\varvec{x}}^\mathrm{s}\) and we derive the optimal combination coefficient. In order to establish the limiting distribution of \(({\varvec{x}}, \hat{\varvec{x}}^\mathrm{L}, \hat{\varvec{x}}^\mathrm{s})\), we design and analyze an approximate message passing algorithm whose iterates give \(\hat{\varvec{x}}^\mathrm{L}\) and approach \(\hat{\varvec{x}}^\mathrm{s}\). Numerical simulations demonstrate the improvement of the proposed combination with respect to the two methods considered separately.

Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号