首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A conservative SPH scheme using exact projection with semi-analytical boundary method for free-surface flows
Institution:1. Chang Jiang Institute of Technology, Wuhan, 430212, PR China;2. School of Civil Engineering, Wuhan University, Wuhan, 430072, PR China;3. Institute of Defence Engineering, AMS, PLA, Beijing, 100850, PR China;1. Fluid Dynamics and Ship Theory (M-8), Hamburg University of Technology, Am Schwarzenberg-Campus 4, Hamburg 21073, Germany;2. EPHYSLAB Environmental Physics Laboratory, Universidade de Vigo, AS LAGOAS, Ourense 32004, Spain
Abstract:This paper presents a novel SPH scheme for modelling incompressible and divergence-free flow with a free surface (IDFSPH) associated with semi-analytical wall boundary conditions. In line with the projection method, the velocity field is decoupled from the pressure field in the momentum equation. A Poisson equation, serving as the pressure solver, is obtained by which pressure field is decoupled completely from the velocity field. In particular, an exact projection scheme is deployed to fulfil the requirement of the divergence-free velocity field. The condition of incompressibility is satisfied by iteratively updating the density field till the convergence. The two-equation kε model is employed to describe the turbulence effects in Newtonian flows. It is shown that the discretised SPH schemes have the feature of both linear and angular momentum conservations. The semi-analytical wall method implements the appropriate integrals to evaluate the boundary contributions to the mass and momentum equations. In comparison to the boundary particle methods, it can greatly enhance the feasibility and efficiency with the complex geometries. The algorithm presented within this paper is applied to several academic test cases for which either analytical results or simulations with other methods are available. The comparisons verify that this scheme is provided with convincing efficiency and extensive applicability.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号