首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Wetting behavior of spherical nanoparticles at a vapor-liquid interface: a density functional theory study
Authors:Zeng Ming  Mi Jianguo  Zhong Chongli
Institution:Laboratory of Computational Chemistry, Department of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
Abstract:The wetting behavior of spherical nanoparticles at a vapor-liquid interface is investigated by using density functional theory, and the line tension calculation method is modified by analyzing the total energy of the vapor-liquid-particle equilibrium. Compared with the direct measurement data from simulation, the results reveal that the thermodynamically consistent Young's equation for planar interfaces is still applicable for high curvature surfaces in predicting a wide range of contact angles. The effect of the line tension on the contact angle is further explored, showing that the contact angles given by the original and modified Young's equations are nearly the same within the region of 60° < θ < 120°. Whereas the effect is considerable when the contact angle deviates from the region. The wetting property of nanoparticles in terms of the fluid-particle interaction strength, particle size, and temperature is also discussed. It is found that, for a certain particle, a moderate fluid-particle interaction strength would keep the particle stable at the interface in a wide temperature range.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号