首页 | 本学科首页   官方微博 | 高级检索  
     


Ionic and electronic conduction of oxygen ion conductors in the Bi2O3−Y2O3 system
Authors:Wang Changzhen  Xu Xiuguang  Li Baozhen
Affiliation:Metallurgical Physicochemistry Division, Northeast Institute of Technology, Shengang, People''s Republic of China
Abstract:The ionic conduction of sintered samples of Bi2O3?Y2O3 containing 20–30 mol% Y2O3 has been investigated by means of ac conductivity experiments and EMF measurement of an oxygen concentration cell using the specimen tablet as electrolyte. Ac conductivity was measured at a frequency of 10 kHz under oxygen partial pressures ranging from 1 to 10-21 atm. The results show that these materials possess high ionic conduction. The conductivities for samples containing 22.5–30 mol% Y2O3 are many times higher than those of stabilized zirconia-based solid electrolyte at corresponding temperatures. The ratio of Emeas./Ecalc. of an oxygen concentration cell Pt∣O2(air)∣Bi2O3?Y2O3∣O2(pure oxygen)∣Pt is close to 1 which shows that the materials containing 22.5 to 30 mol% Y2O3 are nearly pure ionic conductors. The p-type conductivity is negligible at higher PO2 values. The n-type conduction for a sample containing 27.5 mol% Y2O3 was investigated using the Coulomb titration technique in which the following cell was used: Pt Rh∣O2(air)∣Bi2O3?Y2O3∣[O]sn∣W.log Pé=-767000/T+665. Pé is equal to 2.6×10-61 atm at 800°C. The n-type conductivity is also very small. Thus these materials are good oxygen ionic conductors.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号