首页 | 本学科首页   官方微博 | 高级检索  
     


Scanning tunneling microscope with long range lateral motion
Authors:J. Nichols  K.-W. Ng
Affiliation:Department of Physics and Astronomy, University of Kentucky, Lexington, KY 40506-0055, USA
Abstract:We present our work on a recently built scanning tunneling microscope (STM), with coarse motion in two-dimensions. The tip of this STM can be translated a few millimeters in directions both parallel and perpendicular to the tip. This feature allows sampling of a larger area for experiments such as the study of how the electrical properties of charge density waves evolve between contacts, the proximity effect near a normal metal–superconducting interface, charge transport near the contact of a semiconductor interface, and for finding microscopically small samples like graphene. This STM is based on one of our previous one-dimensional designs. It utilizes orchestrated motion of six piezoelectric tubes in a slip–stick configuration in order to produce long range motion for the walker. This device is a single unit with a compact design making it very stable. It is stable enough to obtain atomic resolution on HOPG. It can operate in either a horizontal or vertical configuration and at cryogenic temperatures. It was designed entirely from non-magnetic materials for potential work in a magnetic field.
Keywords:Scanning tunneling microscope   Two-dimensional   Atomic resolution
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号