首页 | 本学科首页   官方微博 | 高级检索  
     


ATR-FTIR study of Bacillus sp. and Escherichia coli settlements on the bare and Al2O3 coated ZnSe internal reflection element
Authors:Rongqiao Chen  Chune Guo  Wubo Chu  Nan Jiang  He Li
Affiliation:a Key Laboratory of Marine Materials and Related Technologies, CAS, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China;b Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 21500, China
Abstract:
Marine microorganism accumulated on the surface of ships or pipelines would accelerate fouling organisms, such as mussels and barnacles, adhered on the surface. It was significant to understand the bio-interaction between the microorganisms and the surface. Attenuated total reflection (ATR) Fourier transform infrared (FTIR) spectroscopy was used to study the initial stages of marine microorganism adhering to surfaces, because it could probe the microorganism interaction to the surface regardless of the water interference. Bacillus sp. and Escherichia coli were selected to study the initial attachment on different surfaces, because they were typical fouling microorganisms and showed opposite Gram stain results. The assays were conducted respectively in dried and settled bacteria on two different surfaces (ZnSe, Al2O3 coated on ZnSe). IR spectra of settled bacteria showed amide I band red shift and amide II band blue shift in aqueous environment on both surfaces compared with the dry bacteria. The reasons of amide bands shift were investigated and it was discovered that the hydrogen bond between the water and the protein of the bacteria led to the protein secondary structure change. ATR-FTIR provided an approach to study the attachment process and showed dynamic changing process on the surface, and it could be an appropriate approach to study the interaction between proteins and chemicals.
Keywords:FTIR-ATR  Bacteria settlement  Secondary structure  Surface interaction
本文献已被 维普 ScienceDirect 等数据库收录!
点击此处可从《中国化学快报》浏览原始摘要信息
点击此处可从《中国化学快报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号