首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Structure Characterization and Lead Detoxification Effect of Carboxymethylated Melanin Derived from <Emphasis Type="Italic">Lachnum</Emphasis> Sp.
Authors:Shuai Zong  Lan Li  Jinglei Li  Farnaz Shaikh  Liu Yang  Ming Ye
Institution:1.College of Food Science and Engineering,Hefei University of Technology,Hefei,China
Abstract:In the present study, an intracellular melanin, named LIM205, was separated from Lachnum YM205 mycelia and was purified on a Sephadex G-15 column. The molecular weight of LIM205 was determined as 522 Da, and its molecular formula was speculated as C28H14N2O7S. The possible chemical structure of LIM205 was determined according to the results of Fourier transform infrared (FT-IR), 1H NMR, 13C NMR, and pyrolysis/GC-MS analysis. With the aim to increase its water solubility, its carboxymethylated derivative, named CLIM205, was formed by the substitution of hydrogen atoms in LIM205 with one, two, and three carboxymethylate groups. FT-IR, UV, and ESI-MS analysis demonstrated that the carboxymethylate groups were conjugated onto LIM205. The lead detoxification activities of LIM205 and CLIM205 had also been investigated. In vivo test showed that both LIM205 and CLIM205 reduced the tissue lead concentration, enhanced lead excretion, and reversed lead-induced alterations in superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), and malondialdehyde (MDA) concentrations in mice, with CLIM205 showed better efficacy. The study indicates that LIM205 and CLIM205 have significant lead detoxification effect which will contribute to solve related problems.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号