首页 | 本学科首页   官方微博 | 高级检索  
     检索      


High-power ultrasonic-assisted phenol and dye degradation on porous manganese oxide doped titanium dioxide catalysts
Authors:R Jothiramalingam  T M Tsao  M K Wang
Institution:(1) State Key Laboratory of Pollution Control and Resource Reuse, Key Laboratory of Yangtze River Water Environment, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, People’s Republic of China;(2) Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan;
Abstract:In this study, a high-power ultrasonicator (600 W) is employed to examine dye degradation and phenol decomposition efficiencies in the presence of catalysts such as K-OMS-2, TiO2, K-OL-1 doped TiO2 and K-OMS-2 doped TiO2. Methylene blue and phenol are chosen as the model pollutants to test the catalytic activity. Effects of ultrasonic power level or ultrasonic intensity, amount of catalysts used and ultrasonic irradiation time for catalytic degradation and removal of phenol were studied. No d-spacing peak shift was observed in intense XRD peaks of K-OMS-2- and K-OL-1-doped TiO2 materials when compared with commercial TiO2. Scanning and transmission electron micrographs (SEM and TEM) show aggregated particle morphology with spherical and rectangular particles for 5 wt % K-OMS-2/TiO2. Methylene blue dye degradation efficiency in the presence of catalytic ultrasonication follows the order like TiO2 > 5 wt % K-OMS-2/TiO2 > 5 wt % K-OL-1/TiO2. The K-OMS-2- and 5 wt % K-OMS-2-doped TiO2 catalyst showed the best and most promising efficiency for phenol removal in ultrasonication process. K-OMS-2 shows the best phenol removal efficiency of 58% within a short duration (30 min) of catalytic ultrasonic-assisted reaction.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号