首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Jahn-Teller effect in the lower electronic states of benzene cation. III. The ground-state vibrations of C6H6+ and C6D6+
Authors:Burrill Andrew B  Chung You K  Mann Heather A  Johnson Philip M
Institution:Department of Chemistry, Stony Brook University, Stony Brook, New York 11794-3400, USA.
Abstract:New mass analyzed threshold ionization (MATI) spectra of the molecules C(6)H(6) (+) and C(6)D(6) (+) have been collected using tunable vacuum ultraviolet (VUV) single photon excitation from the neutral ground state and also using two-photon excitation through the 6(1) vibration of the (1)B(2u) S(1) state. Emphasis was placed on obtaining accurate relative intensities of the vibrational lines in order to use this information in the vibronic analysis. The MATI spectra collected from VUV (S(0) originating state), triplet (T(1)), and resonant two photon (S(1)) excitation schemes were compared with Jahn-Teller calculations employing the classical model of Longuet-Higgins and Moffitt to obtain the Jahn-Teller coupling parameters of 3 of the 4 linearly active modes (e(2g) modes 6-9 in Wilson's notation). Franck-Condon factors, including the effects of geometry changes, were calculated from the vibronic wave functions and used to identify the lines in the various spectra. It is found that most of the lines with substantial intensity can be understood using only the modes 1, 6, 8, and 9. Weaker peaks are due to various non-e(2g) modes, but these do not derive intensity through Jahn-Teller coupling. When the effects of geometry change were included, simulations of the spectra from the calculated vibrational energies and intensities were close to the experimental spectra. This verifies the applicability of the model to the understanding of the vibrational structure of this type of molecule, but some variations indicate directions for further improvement of the model.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号