首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Tuning the hole injection barrier at the organic/metal interface with self-assembled functionalized aromatic thiols
Authors:Chen Wei  Huang Chun  Gao Xing Yu  Wang Li  Zhen Chang Gua  Qi Dongchen  Chen Shi  Zhang Hong Liang  Loh Kian Ping  Chen Zhi Kuan  Wee Andrew Thye Shen
Institution:Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542, Singapore.
Abstract:Self-assembled functionalized aromatic thiols (oligophenylenes composed of building blocks of dimethoxy-substituted phenylenes, perfluoro-substituted phenylenes, and a terminal thiol group) were used to tune the hole injection barrier (Delta(h)) of copper(II) phthalocyanine (CuPc) on Au(111). Synchrotron-based high-resolution photoemission spectroscopy study reveals a significant reduction of Delta(h) by as much as 0.75 eV from Delta(h) = 0.9 eV for CuPc/Au(111) to Delta(h) = 0.15 eV for CuPc/BOF/Au(111), where BOF represents 4-pentafluorophenyl-1-(p-thiophenyl)-2,5-dimethoxybenzene. The delocalized pi orbitals of these functionalized aromatic thiols greatly facilitate effective charge transfer (hole or electron) across the SAM interface as compared to alkanethiols, hence making this novel interface modification scheme a simple and effective way to tune the hole injection barrier. This method has potential applications in molecular electronics, organic light-emitting diodes (OLED), organic field-effect transistors (OFETs), and organic solar cells.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号