首页 | 本学科首页   官方微博 | 高级检索  
     


Amorphization of Silicon during Mechanical Treatment of Its Powders: 1. Process Kinetics
Authors:A. N. Streletskii  A. V. Leonov  P. Yu. Butyagin
Affiliation:(1) Semenov Institute of Chemical Physics, Russian Academy of Sciences, ul. Kosygina 4, Moscow, 117977, Russia;(2) Department of Chemistry, Moscow State University, Vorob'evy gory, Moscow, 119899, Russia
Abstract:The kinetics of silicon amorphization in the process of mechanical treatment of powders in a vibrating micromill was studied by the X-ray diffraction. The treatment was carried out in the argon atmosphere, the apparatus energy intensity was equal to 18 W/g, and the amount of consumed energy (dose) was as high as 510 kJ/g (14 MJ/mol). The analysis of the shape of X-ray diffraction patterns and the dynamics of the changes in silicon atomic structure were described within the framework of three-fraction model. Fraction 1 composed of large crystalline blocks comprising particles of initial powder; the second fraction is represented by nanocrystalline blocks with the dimensions of not less than 8 nm; and the third fraction is an amorphous phase. A decrease in the content and sizes (from 102to 25 nm) of initial microcrystals of fraction 1 is accompanied by the formation of X-ray amorphous phase 3. Nanocrystalline blocks of fraction 2 are none other than the intermediate products. They are first accumulated synchronously with the amorphous phase and then disintegrated with a decrease in their sizes from 8 to 4 nm. At the initial stage of experiment, at the dose up to 15 kJ/g and the degree of amorphization up to 40%, the energy yield of the formation of amorphous phase amounts to 1 ± 0.1 mol/MJ. At the end of experiment (the dose varies from 20 to 510 kJ/g), the yield drops by tens of times, and the content of amorphous phase reaches 70–80%.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号