首页 | 本学科首页   官方微博 | 高级检索  
     


Wavelet-RKHS-based functional statistical classification
Authors:M. Rincón  M. D. Ruiz-Medina
Affiliation:1. Department of Statistics and Operations Research, University of Granada, Campus de Fuente Nueva s/n, 18071, Granada, Spain
Abstract:A functional classification methodology, based on the Reproducing Kernel Hilbert Space (RKHS) theory, is proposed for discrimination of gene expression profiles. The parameter function involved in the definition of the functional logistic regression is univocally and consistently estimated, from the minimization of the penalized negative log-likelihood over a RKHS generated by a suitable wavelet basis. An iterative descendent method, the gradient method, is applied for solving the corresponding minimization problem, i.e., for computing the functional estimate. Temporal gene expression data involved in the yeast cell cycle are classified with the wavelet-RKHS-based discrimination methodology considered. A simulation study is developed for testing the performance of this statistical classification methodology in comparison with other statistical discrimination procedures.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号