首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Generalized high-order twisted partially coherent beams and their propagation characteristics
Authors:Hai-Yun Wang  Zhao-Hui Yang  Kun Liu  Ya-Hong Chen  Lin Liu  Fei Wang  Yang-Jian Cai
Institution:1. School of Physical Science and Technology & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China2. Shandong Provincial Engineering and Technical Center of Light Manipulations & Shandong Provincial Key Laboratory of Optics and Photonic Devices, School of Physics and Electronics, Shandong Normal University, Jinan 250014, China
Abstract:Twist phase is a nontrivial statistical phase that only exists in partially coherent fields, which makes the beam carry orbital angular momentum (OAM). In this paper, we introduce a new kind of partially coherent beams carrying high-order twist phase, named generalized high-order twisted partially coherent beams (GHTPCBs). The propagation dynamics such as the spectral density and OAM flux density propagating in free space are investigated numerically with the help of mode superposition and fast Fourier transform (FFT) algorithm. Our results show that the GHTPCBs are capable of self-focusing, and the beam spot during propagation exhibits teardrop-like or the diamond-like shape in some certain cases. Moreover, the influences of the twist order and the twist factor on the OAM flux density during propagation are also illustrated in detail. Finally, we experimentally synthesize the GHTPCBs with controllable twist phase by means of pseudo-mode superposition and measure their spectral density during propagation. The experimental results agree well with the theoretical predictions. Our studies may find applications in nonlinear optics and particle trapping.
Keywords:light manipulation  statistical optics  twist phase  coherence structure  orbital angular momentum  
点击此处可从《Frontiers of Physics》浏览原始摘要信息
点击此处可从《Frontiers of Physics》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号