首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Distributed entanglement generation from asynchronously excited qubits
Authors:Tian-Tian Huan  Rigui Zhou  Hou Ian
Institution:1. Institute of Applied Physics and Materials Engineering, University of Macau, Macau, China2. College of Mathematics and Computer Science, Chifeng University, Chifeng 024000, China3. College of Information Engineering, Shanghai Maritime University, Shanghai 201306, China
Abstract:The generation of GHZ states calls for simultaneous excitation of multiple qubits. The peculiarity of such states is reflected in their nonzero distributed entanglement which is not contained in other entangled states. We study the optimal way to excite three superconducting qubits through a common cavity resonator in a circuit such that the generation of distributed entanglement among them could be obtained at the highest degree in a time-controllable way. A non-negative measure quantifying this entanglement is derived as a time function of the quadripartite system evolution. We find that this measure does not stay static but obtains the same maximum periodically. When the qubit-resonator couplings are allowed to vary, its peak value is enhanced monotonically by increasing the greatest coupling strength to one of the qubits. The period of its peak to peak revival maximizes when the couplings become inhomogeneous, thus qubit excitation becoming asynchronous, at a relative ratio of 0.35. The study demonstrates the role of asynchronous excitations for time-controlling multi-qubit systems, in particular in extending entanglement time.
Keywords:dynamic entanglement  asynchronous excitation  
点击此处可从《Frontiers of Physics》浏览原始摘要信息
点击此处可从《Frontiers of Physics》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号