首页 | 本学科首页   官方微博 | 高级检索  
     


Principal Component Analysis from the Multivariate Familial Correlation Matrix
Authors:Martin Bilodeau  Pierre Duchesne
Affiliation:Université de Montréal, Montréal, Québec, Canadaf1;École des Hautes Études Commerciales, Montréal, Québec, Canada, , f2
Abstract:This paper considers principal component analysis (PCA) in familial models, where the number of siblings can differ among families. S. Konishi and C. R. Rao (1992, Biometrika79, 631–641) used the unified estimator of S. Konishi and C. G. Khatri (1990, Ann. Inst. Statist. Math.42, 561–580) to develop a PCA derived from the covariance matrix. However, because of the lack of invariance to componentwise change of scale, an analysis based on the correlation matrix is often preferred. The asymptotic distribution of the estimated eigenvalues and eigenvectors of the correlation matrix are derived under elliptical sampling. A Monte Carlo simulation shows the usefulness of the asymptotic expressions for samples as small as N=25 families.
Keywords:familial model   principal components   correlation matrix   elliptical distributions
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号