首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Dynamics of an impact-progressive system
Authors:Guanwei Luo  Xiaohong Lv  Li Ma
Institution:1. School of Mechatronic Engineering, Lanzhou Jiaotong University, Lanzhou 730070, PR China;2. School of Mathematics, Physics and Software Engineering, Lanzhou Jiaotong University, Lanzhou, 730070, PR China
Abstract:An impact oscillator with a frictional slider is considered. The basic function of the investigated system is to overcome the frictional force and move downwards. Based on the analysis of the oscillatory and progressive motions of the system, we introduce an impact Poincaré map with dynamical variables defined at the impact instants. The nonlinear dynamics of the impact system with a frictional slider is analyzed by using the impact Poincaré map. The stability and bifurcations of single-impact periodic motions are analyzed, and some information about the existence of other types of periodic-impact motions is provided. Since the system equilibrium is moving downwards, one way to monitor the progression rate is to calculate its progression in a finite time. The simulation results show that in a finite time, the largest progression of the system is found to occur for period-1 multi-impact motions existing in the regions of low forcing frequencies. Secondly, the progression of the period-1 single-impact motion with peak-impact velocity is also distinct enough. However, it is important to note, that the largest progression for period-1 multi-impact motion existing at a low forcing frequency is not an optimal choice for practical engineering applications. The greater the number of the impacts in an excitation period, the more distinct the adverse effects such as high noise levels and wear and tear caused by impacts. As a result, the progression of the period-1 single-impact motion with the peak-impact velocity is still optimal for practical applications. The influence of parameter variations on the oscillatory and progressive motions of the impact-progressive system are elucidated accordingly, and feasible parameter regions are provided.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号