首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of thermal ionization in a dense helium plasma by the Feynman path integral method
Authors:S V Shevkunov
Institution:1.St. Petersburg State Polytechnic University,St. Petersburg,Russia
Abstract:The region of equilibrium states is studied where the quantum nature of the electron component and a strong nonideality of a plasma play a key role. The problem of negative signs in the calculation of equilibrium averages a system of indistinguishable quantum particles with a spin is solved in the macroscopic limit. It is demonstrated that the calculation can be conducted up to a numerical result. The complete set of symmetrized basis wave functions is constructed based on the Young symmetry operators. The combinatorial weight coefficients of the states corresponding to different graphs of connected Feynman paths in multiparticle systems are calculated by the method of random walk over permutation classes. The kinetic energy is calculated using a viral estimator at a finite pressure in a statistical ensemble with flexible boundaries. Based on the methods developed in the paper, the computer simulation is performed for a dense helium plasma in the temperature range from 30000 to 40000 K. The equation of state, internal energy, ionization degree, and structural characteristic of the plasma are calculated in terms of spatial correlation functions. The parameters of a pseudopotential plasma model are estimated.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号