首页 | 本学科首页   官方微博 | 高级检索  
     检索      


AFM studies of solid-supported lipid bilayers formed at a Au(111) electrode surface using vesicle fusion and a combination of Langmuir-Blodgett and Langmuir-Schaefer techniques
Authors:Li Ming  Chen Maohui  Sheepwash Erin  Brosseau Christa L  Li Hongqiang  Pettinger Bruno  Gruler Hans  Lipkowski Jacek
Institution:Department of Chemistry, University of Guelph, Guelph, Ontario, Canada.
Abstract:Atomic force microscopy (AFM) has been used to characterize the formation of a phospholipid bilayer composed of 1,2-dimyristyl-sn-glycero-3-phosphocholine (DMPC) at a Au(111) electrode surface. The bilayer was formed by one of two methods: fusion of lamellar vesicles or by the combination of Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) deposition. Results indicate that phospholipid vesicles rapidly adsorb and fuse to form a film at the electrode surface. The resulting film undergoes a very slow structural transformation until a characteristic corrugated phase is formed. Force-distance curve measurements reveal that the thickness of the corrugated phase is consistent with the thickness of a bilayer lipid membrane. The formation of the corrugated phase may be explained by considering the elastic properties of the film and taking into account spontaneous curvature induced by the asymmetric environment of the bilayer, in which one side faces the gold substrate and the other side faces the solution. The effect of temperature and electrode potential on the stability of the corrugated phase has also been described.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号