首页 | 本学科首页   官方微博 | 高级检索  
     


Inductively Coupled Plasma and Electron Cyclotron Resonance Plasma Etching of an InGaAlP Compound Semiconductor System
Authors:J. Hong  E. S. Lambers  C. R. Abernathy  S. J. Pearton  R. J. Shul  W. S. Hobson
Affiliation:1. Department of Materials Science and Engineering, University of Florida, Gainesville, FL 32611;2. Sandia National Laboratories, Albuquerque, NM 87185;3. Bell Laboratories, Lucent Technologies, Murray Hill, NJ 07974
Abstract:Current and future generations of sophisticated compound semiconductor devices require the ability for submicron scale patterning. The situation is being complicated because some of the new devices are based on a wider diversity of materials to be etched. Conventional RIE (reactive ion etching) has been prevalent across the industry so far, but has limitations for materials with high bond strengths or multiple elements. In this article, we suggest high-density plasmas such as ECR (electron cyclotron resonance) and ICP (inductively coupled plasma), for the etching of ternary compound semiconductors (InGaP, AlInP, AlGaP) that are employed for electronic devices such as heterojunction bipolar transistors (HBTs) or high electron mobility transistors (HEMTs), and photonic devices such as light-emitting diodes (LEDs) and lasers. Operating at lower pressure, high-density plasma sources are expected to meet target goals determined in terms of etch rate, surface morphology, surface stoichiometry, selectivity, etc. The etching mechanisms that are described in this article can also be applied to other III-V (GaAs-based, InP-based) as well as III-Nitride, because the InGaAlP system shares many of the same properties.
Keywords:plasma  InGaA1P compound  reactive ion etching  electron cyclotron resonance  inductively coupled plasma.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号