Probing restrictive diffusion dynamics at short time scales |
| |
Authors: | Kiruluta Andrew J M |
| |
Affiliation: | Department of Physics, Harvard University, Jefferson Physical Laboratories, 17 Oxford Street, Cambridge, MA 02138, USA. kiruluta@physics.harvard.edu |
| |
Abstract: | Diffusion imaging gradients serve to spectrally filter the temporally evolving diffusion tensor. In this framework, the design of diffusion sensitizing gradients is reduced to the problem of adequately sampling q-space in the spectral domain. The practical limitations imposed by the requirement for delta-function type diffusion-sensitizing gradients to adequately sample q-space, can be relaxed if these impulse gradients are replaced with chirped oscillatory gradients. It is well known that in many systems of interest, dispersion of velocity will itself produce a peak in the velocity correlation function near w=0, while restricted diffusion will manifest itself in the dispersion spectrum at higher frequencies. In this paper, chirped diffusion-sensitizing gradients are proposed and analytically shown to yield an efficient sampling of q-space in a manner that asymptotically approaches that using delta-function diffusion-sensitizing gradient. The challenge is the consequent reduction in diffusion sensitivity as one probes higher frequency dynamics. This problem is addressed by restricting the gradient power to a spectral bandwidth corresponding to the diffusion spectral range of the underlying restrictive geometry. Simultaneous imaging of diffusion and flow at microscopic resolution and at temporally resolvable diffusion time scales thus becomes possible in vivo. Simulations and experiments validate the proposed approach. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|