首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Study on Ultra-fast Cooling Behaviors of Water Spray Cooled Stainless Steel Plates
Authors:Muhammad Aamir  Liao Qiang  Zhu Xun  Hong Wang  Ramzan Ullah
Institution:1. Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing, Chinaaamircqu@gmail.com;3. Key Laboratory of Low-Grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing, China;4. Department of Physics, Comsats Institute of Information Technology, Islamabad, Pakistan
Abstract:Spray cooling is an effective tool to dissipate high heat fluxes from hot surfaces. This article thoroughly investigates the effect of thickness of a hot stainless steel plate on the cooling time, cooling rate, heat flux, and heat transfer coefficient under constant mass flow rate maintained at 1 MPa using water as the coolant. Cylindrical samples of stainless steel with constant diameter (D = 25 mm) and thickness (δ = 7.5, 12, 16.5, and 21 mm) were used in the present study. Critical droplet diameter to achieve an ultra-fast cooling rate of 300°C/s was estimated by using an analytical model for samples of varying thicknesses. The analytical model (one side spray cooling) showed good agreement with experimental results with a relative error of 3.2% in the plate thickness range of 1–12 mm. An increasing trend in maximum heat flux was found with increasing thickness of the plate. Maximum heat flux as high as 1,800 kW/m2 was achieved for a 21-mm-thick sample. Heat transfer coefficients in the range 0.092–96.24 kW/m2K, 0.111–98.9 kW/m2K, 0.074–63.4 kW/m2K, and 0.127–55.63 kW/m2K were reported for sample of varying thicknesses in the present study. Limited published work is available with reference to water spray cooling dynamics and thickness of stainless steel plate. Therefore, the present study focuses on the correlation between the thickness of the plate and spray dynamics of water spray cooling.
Keywords:spray cooling  ultra-fast cooling rate  thickness effect  critical droplet diameter
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号