首页 | 本学科首页   官方微博 | 高级检索  
     


A molecular dynamics investigation of the titration of a trivalent aqueous ion
Authors:James R. Rustad  William H. Casey
Affiliation:(1) Department of Geology, University of California, Davis Davis, CA 95616, USA;(2) Department of Chemistry, University of California, Davis Davis, CA 95616, USA
Abstract:We carried out a series of molecular dynamics simulations of the hydrolysis of a model trivalent metal ion in aqueous solution. We use a dissociative model for water and examine the spontaneous speciation of M3+ into M(OH) n (3-n)+ (n =1,4) both in neutral solution and as a function of added protons and hydroxide ions. The species distributions in neutral solution correspond reasonably well with those expected for real trivalent metal ions at neutral pH. However, the change in the species distributions as a function of either added protons or hydroxide ions is much less than expected with very large concentrations of protons or hydroxide ions required to shift the species equilibria in either direction. The influence of added protons and hydroxide ions on the species distributions appears to be proportional to the average charge of the hydrolysis couples, being highest for the 3+/2+ couple and lowest for the 1+/0 and 0/1- couples. Proton exchange rates vary with proton/hydroxide ion concentration giving a minimum at intermediate values ([H+]≈ 0.166) with increasing rates at both lower and higher pH.
Keywords:Hydrolysis  Trivalent ion  Molecular dynamics  pH  Amphoteric  Simulation  Titration
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号