首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evaporation phenomenon past a rotating hydrocarbon droplet of ternary components
Institution:1. Université de Lorraine, Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Nancy F-54000, France;2. CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274 CNRS, Nancy F-54000, France;3. Chimie ParisTech, Institut de Recherche de Chimie Paris, UMR 8247 CNRS, 11 rue Pierre et Marie Curie, 75005 Paris, France;4. UPMC-Université Paris 06, Institut de Recherche de Chimie Paris, UMR 8247 CNRS, 11 rue Pierre et Marie Curie, 75005 Paris, France;1. Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore;2. Mathematics Application Consortium for Science and Industry (MACSI), Department of Mathematics and Statistics, University of Limerick, Limerick, Ireland;1. Université de Lorraine, Laboratoire Réactions et Génie des Procédés, UMR 7274, Nancy F-54001, France;2. CNRS, Laboratoire Réactions et Génie des Procédés, UMR 7274, Nancy F-54001, France;3. CNRS/Saint-Gobain, Laboratoire de Synthèse et Fonctionnalisation des Céramiques, UMR 3080, Cavaillon F-84306, France;1. Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400030, China;2. Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China;1. Helmholtz-Zentrum Dresden-Rossendorf, Institute of Fluid Dynamics, Bautzner Landstraße 400, 01328 Dresden, Germany;2. Institute of Process Engineering and Environmental Technology, Technische Universität Dresden, 01062 Dresden, Germany;3. Department of Chemical Engineering, Laval University, Québec, Canada G1V 0A6
Abstract:A numerical study of heat and mass transfer from an evaporating fuel droplet rotating around its vertical axis was performed in forced convection only on the side opposite to the flow. The flow was assumed to be laminar, and the droplet was assumed to maintain its spherical shape during its lifetime. Based on the abovementioned assumption, the conservation equations in a general curvilinear coordinate were solved numerically. The behavior of rotating droplet evaporation in the forced convection flow can be investigated by analyzing the effects of the rotation of the droplet on the evaporation process of multi-component hydrocarbons droplet. The droplet is simulated to behave as a hard sphere. The transfer equations are discretized using an implicit finite difference method. Thomas algorithm is used to solve the system of algebraic equations. Moreover, dimensionless parameters of heat and mass transfer phenomena around a rotating hydrocarbon droplet were determined. The thickness of the boundary layer is unknown for this model and therefore, it was determined in function of time. Additionally, the study concerns “Dgheim dimensionless number” which is the ratio of the rotation forces over the viscosity forces. Dgheim dimensionless number is correlated to Nusselt and Sherwood numbers for multi-component hydrocarbon droplets in evaporation by taking into account the effect of heat and mass Spalding, Prandtl and Schmidt numbers respectively. Also, correlations for Nusselt and Sherwood numbers in terms of Reynolds, Prandtl and Schmidt numbers are proposed. These correlations consider the rotation phenomenon and advance the variation of the thermophysical and transport properties in the vapor phase of multi-component blends.
Keywords:Rotating sphere  Transfer numbers  Correlation  Droplet evaporation  Multi-component hydrocarbons
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号