首页 | 本学科首页   官方微博 | 高级检索  
     


Electrodeposited glucose oxidase/anionic clay for glucose biosensors design
Authors:Mignani Adriana  Scavetta Erika  Tonelli Domenica
Affiliation:Department of Physical and Inorganic Chemistry, University of Bologna, Viale Risorgimento 4, 40136 Bologna, INSTM, UdR Bologna
Abstract:An amperometric glucose biosensor was developed using an anionic clay matrix (layered double hydroxide (LDH), Ni/Al-NO3) for the immobilization of glucose oxidase (GOx). The biofilm was prepared by electrodeposition of the clay and GOx and subsequent cross-linking with glutaraldeyde. The Pt surface modified with the Ni/Al-NO3 shows a much reduced noise, giving rise to a better signal to noise ratio for the currents relative to H2O2 oxidation, and a linear range for H2O2 determination wider than the one observed for bare Pt electrodes. Under the optimised operative conditions, the performances of the biosensor have been evaluated by measuring the steady-state currents (at +0.45 V versus SCE) to increasing concentrations of glucose in “air saturated” 0.1 M phosphate buffer (pH 7.0). Both batch and flow injection modes were explored. The response to glucose was linear up to 8.0 and 12.0 mM, and the sensitivities were 7.7 ± 0.1 and 19.1 ± 0.2 mA M−1 cm−2, respectively. The current response of the biosensors does not significantly change for 15 consecutive days in batch and for 10 days in flow, at least, if stored at 4 °C in phosphate buffer, when not in use. The effects of interferants and applicability to fruit juices and soft drinks analysis of the biosensor were also investigated.
Keywords:Amperometric biosensor   Glucose oxidase   Layered double hydroxides   Electrodeposition   Interferants
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号