首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Research of the rapid pressure-strain correlation model in the rapid distortion limit
作者单位:HUANG SiYuan & FU Song Department of Engineering Mechanics,Tsinghua University,Beijing 100084,China
摘    要:Even though a number of rapid pressure-strain models have been suggested and successfully tested for different flow situations by various authors,the model proposals still exhibit some apparent deficiencies when subjected to the flows with rapid distortion. From Mansour's relatively straightforward rapid distortion analysis,if an initially anisotropic flow undergoes a purely rapid rotation,the anisotropy measures will exhibit the behavior of the damped oscillations. Within the current framework of modeling the rapid pressure-strain correlation,i.e.,the models based on the assumption that the M-tensor for the rapid pressure-strain term is expand-able in the Reynolds-stress anisotropy tensor alone,all the model predictions fail to give the damped oscillations in the turbulence anisotropy. In the case of initially isotropic turbulence subjected to rapid distortion,Sj?gren and Johansson showed that all the existing rapid pressure-strain models would deliver the identical path in the anisotropy-invariant map for both homogeneous plane strain and shear flows. The rapid distortion analysis shows two distinct curves reflecting different flow physics. In this work,we try to present a possible way to create a system that can overcome these deficiencies with the aid of the rapid distortion theory (RDT).


Research of the rapid pressure-strain correlation model in the rapid distortion limit
Authors:SiYuan Huang and Song Fu
Institution:(1) Department of Engineering Mechanics, Tsinghua University, Beijing, 100084, China
Abstract:Even though a number of rapid pressure-strain models have been suggested and successfully tested for different flow situations by various authors,the model proposals still exhibit some apparent deficiencies when subjected to the flows with rapid distortion. From Mansour's relatively straightforward rapid distortion analysis,if an initially anisotropic flow undergoes a purely rapid rotation,the anisotropy measures will exhibit the behavior of the damped oscillations. Within the current framework of modeling the rapid pressure-strain correlation,i.e.,the models based on the assumption that the M-tensor for the rapid pressure-strain term is expand-able in the Reynolds-stress anisotropy tensor alone,all the model predictions fail to give the damped oscillations in the turbulence anisotropy. In the case of initially isotropic turbulence subjected to rapid distortion,Sj?gren and Johansson showed that all the existing rapid pressure-strain models would deliver the identical path in the anisotropy-invariant map for both homogeneous plane strain and shear flows. The rapid distortion analysis shows two distinct curves reflecting different flow physics. In this work,we try to present a possible way to create a system that can overcome these deficiencies with the aid of the rapid distortion theory (RDT).
Keywords:Reynolds-Stress turbulence Model  rapid pressure-strain correlation  rapid distortion theory
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号