首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Stereochemical Course of the Reaction between Thiocarbonyl Compounds and Oxiranes: Reaction with cis‐ and trans‐2,3‐Dimethyloxirane
Authors:Milen Blagoev  Anthony Linden  Heinz Heimgartner
Abstract:The reactions of thiocarbonyl compounds with cis‐2,3‐dimethyloxirane ( 1a ) in CH2Cl2 in the presence of BF3⋅Et2O or SnCl4 led to trans‐4,5‐dimethyl‐1,3‐oxathiolanes, whereas with trans‐2,3‐dimethyloxirane ( 1b ) cis‐4,5‐dimethyl‐1,3‐oxathiolanes were formed. With the stronger Lewis acid SnCl4, the formation of side‐products was also observed. In the case of 1,3‐thiazole‐5(4H)‐thione 2 , these side‐products are the corresponding 1,3‐thiazol‐5(4H)‐one 5 and the 1 : 2 adduct 8 (Schemes 2 – 4). Their formation can be rationalized by the decomposition of the initially formed spirocyclic 1,3‐oxathiolane and by a second addition onto the C=N bond of the 1 : 1 adduct, respectively. The secondary epimerization by inversion of the configuration of the spiro‐C‐atom (Schemes 5 – 7) can be explained by a Lewis‐acid‐catalyzed ring opening of the 1,3‐oxathiolane ring and subsequent ring closure to the thermodynamically more stable isomer (Scheme 12). In the case of 2,2,4,4‐tetramethyl‐3‐thioxocyclobutanone ( 20 ), apart from the expected spirocyclic 1,3‐oxathiolanes 21 and 23 , dispirocyclic 1 : 2 adducts were formed by a secondary addition onto the C=O group of the four‐membered ring (Schemes 9 and 10).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号