首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Carbon composite-based DNA sensor for detection of bacterial meningitis caused by Neisseria meningitidis
Authors:Sandip K Dash  Minakshi Sharma  Akhilesh Kumar  Shashi Khare  Ashok Kumar
Institution:1. Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology, Mall Road, New Delhi, Delhi, 110007, India
2. Department of Zoology, Maharshi Dayanand University, Rohtak, Haryana, 124001, India
3. National Centre for Disease Control, Sham Nath Marg, New Delhi, Delhi, 110054, India
Abstract:Carbon/1-octadecanethiol-carboxylated multiwalled carbon nanotubes (cMWCNT) composite was used to construct a DNA sensor for detection of human bacterial meningitis caused by Neisseria meningitidis. The carbon composite electrode was used to covalently immobilize 5′-amine-labeled 19-mer single-stranded DNA (ssDNA) probe, which was hybridized with 1.35?×?102–3.44?×?104 pM (0.5–128 ng/5 μl) of single-stranded genomic DNA (ssG-DNA) of N. meningitidis for 10 min at room temperature (RT). The surface topography of the DNA sensor was characterized by using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) while electrochemically characterized by electrochemical impedance. The immobilization of ssDNA probe and hybridization with ssG-DNA were detected electrochemically by cyclic voltammetry (CV) and differential pulse voltammetry (DPV) at RT in 30 min with a response time of 1 min. The DNA sensor showed high pathogenic specificity and can distinguish among complement, noncomplement, one base mismatch, and triple base mismatch oligomer targets. The limit of detection (LOD) and sensitivity of the sensor were approximately 68 pM and 38.095 (μA/cm2)/nM of ssG-DNA, respectively, using DPV. The improved sensitivity and LOD of the sensor can be attributed to the higher efficiency of probe immobilization due to high surface area-to-volume ratio and good electrical activity of cMWCNT. Figure
?
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号