首页 | 本学科首页   官方微博 | 高级检索  
     


Tin oxide-titanium oxide/graphene composited as anode materials for lithium-ion batteries
Authors:Shan-Shan Chen  Xue Qin
Affiliation:1. Department of chemistry, School of Science, Tianjin University, and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072, China
Abstract:A tin oxide-titanium oxide/graphene (SnO2-TiO2/G) ternary nanocomposite as high-performance anode for Li-ion batteries was prepared via a simple reflux method. The graphite oxide (GO) was reduced to graphene nanosheet, and the SnO2-TiO2 nanocomposites were evenly distributed on the graphene matrix in the SnO2-TiO2/G nanocomposite. The as-prepared SnO2-TiO2/G nanocomposites were employed as anode materials for lithium-ion batteries, showing an outstanding performance with high reversible capacity and long cycle life. The composite delivered a superior initial discharge capacity of 1,594.6 mAh g?1 and a reversible specific capacity of 1,500.3 mAh g?1 at a current density of 100 mA g?1. After 100 cycles, the reversible discharge capacity was still maintained at 1,177.4 mAh g?1 at a current density of 100 mA g?1 with a high retained rate of reversible capacity of 73.8 %. The addition of small amount of TiO2 nanoparticles improved the cycling stability and specific capacity of SnO2-TiO2/G nanocomposite, obviously. The results demonstrate that the SnO2-TiO2/G nanocomposite is a promising alternative anode material for practical Li-ion batteries.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号