首页 | 本学科首页   官方微博 | 高级检索  
     

不确定混沌系统的径向基函数神经网络反馈补偿控制
引用本文:曾喆昭*. 不确定混沌系统的径向基函数神经网络反馈补偿控制[J]. 物理学报, 2013, 62(3): 30504-030504. DOI: 10.7498/aps.62.030504
作者姓名:曾喆昭*
作者单位:长沙理工大学电气与信息工程学院, 长沙 410076
基金项目:国家自然科学基金(批准号: 61040049)和湖南省自然科学基金(批准号: 11JJ6064)和智能电网运行与控制湖南省重点实验室资助的课题.
摘    要:对不确定混沌系统控制问题, 研究了一种基于径向基函数神经网络(radial basis function neural network, RBFNN)的反馈补偿控制方法. 该方法首先用RBFNN对混沌系统的动力学特性进行学习, 然后用训练好的RBFNN模型对混沌系统进行反馈补偿控制. 该方法的特点是不需要被控混沌系统的数学模型,可以快速跟踪任意给定的参考信号. 数值仿真试验表明了该控制方法不仅具有响应速度快、控制精度高, 而且具有较强的抑制混沌系统参数摄动能力和抗干扰能力.

关 键 词:混沌控制  径向基神经网络  反馈控制  误差补偿
收稿时间:2012-08-18

Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network
Zeng Zhe-Zhao. Feedback compensation control on chaotic system with uncertainty based on radial basis function neural network[J]. Acta Physica Sinica, 2013, 62(3): 30504-030504. DOI: 10.7498/aps.62.030504
Authors:Zeng Zhe-Zhao
Affiliation:College of Electric and Information Engineering, Changsha University of Science and Technology, Changsha 410076, China
Abstract:For the problem of controlling uncertain chaotic systems, a method of feedback compensation control based on the radial basis function neural network (RBFNN) is studied. In the proposed method, dynamic properties of chaotic system is first trained by RBFNN, and then feedback compensation control for chaotic system is implemented using trained good RBFNN model. The characteristics of this method is that this method can quickly track any given reference signal with on requirement for any mathematic model of controlled chaos system. The numerical simulation results show that the proposed control method not only has the fast response speed, high control accuracy, but also has a stronger ability to suppress parameter perturbation and to resist interference to chaos system.
Keywords:chaotic control  RBF neural network  feedback control  error compensation
本文献已被 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号