首页 | 本学科首页   官方微博 | 高级检索  
     


Experimental study of a dynamic filtration system with overlapping ceramic membranes and non-permeating disks rotating at independent speeds
Authors:Gaohong He   Lu Hui Ding   Patrick Paullier  Michel Y. Jaffrin  
Affiliation:

aDepartment of Biological Engineering, Technological University of Compiegne, BP 20529, 60205 Compiegne, France

bDepartment of Chemical Engineering, Dalian University of Technology, Dalian 11602, China

Abstract:In a previous paper [Ding et al., J. Membr. Sci. 276 (2006) 232], we have investigated the performance in microfiltration of mineral suspensions of a novel filtration pilot consisting in overlapping ceramic membranes disks rotating at same speed on two parallel shafts. In this paper, we investigate a modification of this concept in which the ceramic disks of one shaft were replaced by non-permeating metal disks of same size rotating at a speed different from that of membranes. We also operated the pilot without disks on the 2nd shaft in order to eliminate membrane overlapping. When using metal disks with radial vanes, permeate fluxes were found to be 50–60% higher than those obtained in the same conditions with the previous design using only ceramic disks. By comparing permeate fluxes in different configurations, membranes on both shafts, membranes on the 1st shaft with and without metal disks on the 2nd shaft, we showed that, at a feed concentration of 200 g L−1, the effect on permeate flux J, of shear rate increment due to membrane overlapping, could be completely offset by the high concentration increase between two adjacent and overlapping membranes. Raising the ceramic disks rotation speed Nc had a larger effect on J than increasing the metal disks speed Nm. For Nc = 32.16 Hz (1930 rpm) and Nm = 2.4 Hz (144 rpm), J reached 1790 L h−1 m−2 at 310 kPa, versus 1100 L h−1 m−2 for Nc = 12.3 Hz (738 rpm) and Nm = 22.26 Hz (1336 rpm) (for the same total sum Nc + Nm). Measurements of electrical power consumed by friction on rotating disks showed that the energy spent per m3 of permeate was lowest when using metal disk with vanes rotating at low speed and ceramic disks rotating at high speed.
Keywords:Rotating ceramic membranes   Multishaft systems   Dynamic filtration
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号