Abstract: | Phase equilibria in the EuS-Cu2S-Nd2S3 system were studied in an isothermal (970 K) section and NdCuS2-EuS and Cu2S-EuNdCuS3 polythermal sections. The complex sulfide EuNdCuS3 has an orthorhombic crystal lattice (space group Pnma; a = 1.10438(2) nm, b = 0.40660(1) nm, c = 1.14149(4) nm), is isostructural to BaLaCuS3, and melts incongruently at 1470 K: EuNdCuS3 (0.50 EuS; 0.50 NdCuS2) ai 0.18 EuS ss (0.88 EuS; 0.12 NdCuS2) + 0.82 L (0.415 EuS; 0.585 NdCuS2); ΔH = 17.8 kJ/mol. Within the range 0.5 mol % EuS, EuNdCuS3-based solid solutions were not found. At 970 K, the tie lines pass from the compound EuNdCuS3 to Cu2S, EuS, NdCuS2, and EuNd2S4 phases and lie between the NdCuS2 phase and solid solutions (ss) of γ-Nd2S3 with EuNd2S4. Eutectics are formed between the compounds NdCuS2 and EuNdCuS3 at 32.0 mol % EuS T = 1318 K and between the compounds Cu2S and EuNdCuS3 at 20.5 mol % EuNdCuS3 and T = 1142 K. Five main subordinate triangles were identified in the system. |