首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Ion pair formation in alkali-SF6 collisions: Dependence on collisional and vibrational energy
Authors:M M Hubers  J Los
Abstract:The dependence of ion pair formation in collisions of fast alkali atoms (K, Na and Li) with SF6 on the initial relative kinetic energy and the internal energy of the target molecule has been studied by the crossed molecular beam method. Using a mass spectrometer we have measured total cross sections for negative ion formation as a function of translational and internal energy. Collision energies ranged from threshold up to 35 eV and SF6 source temperatures were varied from 300 K to 850 K.By means of an inverse Laplace transform of the measured cross sections, we have determined total specific cross sections for each negative ion depending on the SF6 vibrational energy and at fixed relative kinetic energy.The relative importance of both collisional and internal energy in promoting the electron transfer process is discussed for the various reaction channels in terms of a collision model. An essential feature of this model is the stretching of the S-F molecular ion bond during the collision. The product show complete relaxation in the threshold region, i.e., vibrational and collisional energy are equivalent: This holds for the SF6 formation only near threshold and for the SF5 and F formation up to about 2 eV above threshold. In the post-threshold region the effect of the internal energy on the cross section dominates over that of the translational energy.From these measurements the adiabatic electron affinity of SF6 is inferred to be 0.32 ± 0.15 eV, T = 0 K. Some other thermodynamic data are deduced: EA(SF5) > 2.9 ± 0.1 eV (T = 300 K) and D0(SF5-F) = 1.0 ± 0.1 eV.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号